您好!欢迎光临深圳市英瑞尔芯科技有限公司官方网站!
新闻动态
产品展示
联系我们

深圳市英瑞尔芯科技有限公司

地   址:深圳市福田区振华路现代之窗A座7B

联系人:刘小姐

电   话:186 6591 0262

微   信:186 6591 0262

新闻详情 当前位置:首页 > 行业新闻 > 揭秘MOS管和MOS管驱动电路之间的联系

揭秘MOS管和MOS管驱动电路之间的联系
 日期:2022/5/3 6:49:00 

  在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS管的导通电阻、最大电压、最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

  下面是我对MOS及MOS驱动电路基础的一点总结,其中参考了一些资料。包括MOS管的介绍、特性、驱动以及应用电路。

  MOSFET管FET的一种(另一种是JEFT),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到的NMOS,或者PMOS就是指这两种。

  至于为什么不适用号耗尽型的MOS管,不建议刨根问底。

  对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS,下面的介绍中,也多以NMOS为主。

  MOS管的三个管教之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的,寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

  在MOS管原理图上可以看到漏极和源极之间有一个寄生二极管,这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

  MOS管导通特性

  导通的意思是作为开关,相当于开关闭合。

  NMOS的特性,Vgs大于一定的值就会导通,适用于源极接地的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

  PMOS的特性,Vgs小于一定的值就会导通,适用于源极接Vcc的情况(高端驱动)。但是,虽然PMOS可以很方便的用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是用NMOS。

MOS管开关管损失

  不管是NMOS还是PMOS,导通后都有导通电阻存在,这样点电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗,现在的小功率MOS管导通电阻一般在几十毫伏左右,几豪欧的也有。MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失时电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

  导通瞬间电压和电流的乘积很大,造成的损失也很大。缩短开关时间,可以减小每次导通时的损失,降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

  MOS管驱动

  跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。

  在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

  第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压和漏极电压(Vcc)相同,所以这是栅极电压要比Vcc大4V或10V。如果在同一个系统里,要得到比Vcc大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

  上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域,但在12V汽车电子系统里,一般4V导通就够用了。

  MOS管应用电路

  MOS管最显着的特性是开关特性好,所以被广泛应用于需要电子开关的电路中,常见的如开关电源和马达驱动电路,也有照明调光。

  现在的MOS驱动,有几个特别的需求:

  1.低压应用

  当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be只有0.7V左右的压降,导致实际最终加载gate上的电压只有4.3V,这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。同样的问题也发生在使用3V或者其他低压电源的场合。

  2.宽电压应用

  输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。

  为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。

  同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。

  3.双电压应用

  在一些控制电路中,逻辑部分使用典型的5V或3.3V数字电压,而功率部分使用12V甚至更高的电压。两个电压采用共地方式连接。

  这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2提到的问题。

  在这三种情况下,图腾柱结构无法满足输出需求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。

相关标签: