您好!欢迎光临五金机电租赁官方网站!
新闻动态
产品展示
联系我们

五金机电租赁

地   址:云南省昆明市西山区云纺东南亚商城B栋1501

联系人:赵经理

电   话:18468005465

微   信:qcf18468005465

新闻详情 当前位置:首页 > 行业新闻 > 水轮发电机组如何实现压力脉动的状态评估?

水轮发电机组如何实现压力脉动的状态评估?
 日期:2020/4/21 17:34:00 

基于互信息理论和统计学提出了水轮发电机组工况变量对振动变量贡献率的计算方法,并构建了压力脉动劣化度函数,实现了压力脉动状态预测评估。以水轮发电机组振动变量和工况参数之间相关关系为切入点,结合互信息理论,深入挖掘水轮发电机组海量的历史监测数据,揭示水轮发电机组振动变量与工况参数之间的非线性相关关系,通过计算水轮发电机组各工况参数对振动变量的贡献度,提取出水轮发电机组振动变量的主要相关工况参数。进一步融合主要相关工况参数与压力脉动幅值形成融合特征向量,提出了基于支持向量机和极限学习机的水轮发电机组压力脉动状态预测方法,实现了压力脉动状态预测,同时引入数理统计与模糊子集理论,构建了基于历史统计曲线的水轮发电机组压力脉动模糊集,提出压力脉动模糊集的劣化度评价函数,实现水轮发电机组压力脉动的状态评估。


融合水轮发电机组振动信号时频特征和工况关联规则特征,构建了多重征兆向量,引入模糊推理系统和径向基神经网络模型,提出了一种基于约束扩展广义动态模糊神经网络的水轮发电机组故障预测方法。在该方法中,以振动信号的频谱能量分布特征和工况关联规则特征作为故障预测的融合故障征兆向量,充分利用模糊规则推理与神经网络学习能力,动态推求水轮发电机组未来的故障状态,预测潜在故障未来可能发生概率,实现水轮发电机组故障预测。同时探讨了水轮发电机组故障可能发生概率与维修时限、健康状况之间的关系,提出了一种以故障可能发生概率为自变量的水轮发电机组维修时限函数,搭建了故障预测至维修决策之间的桥梁,以启动维修时限的形式明晰化故障预测结果的含义,对水轮发电机组实施状态检修与预测性维修具有重要的意义。

本文设计开发了一种面向服务的水轮发电机组故障诊断及状态评估系统,该方案构建了网络化、服务知识化、资源共享化的开放式的统一知识平台,通过整合异地不同用户的知识资源,不断丰富与补充水轮发电机组故障诊断及状态评估系统的专家知识库,提高水轮发电机组整机设备故障诊断及状态评估的性能水平。系统已成功应用于贵州乌江水电开发有限责任公司东风发电厂,为现场运行维护人员提供辅助维修决策建议指导。

发电机租赁和以上信息息息相关,有需要做租赁的可以做具体了解。

相关标签:发电机,发电机租赁,