您好!欢迎光临五金机电租赁官方网站!
新闻动态
产品展示
联系我们

五金机电租赁

地   址:云南省昆明市西山区云纺东南亚商城B栋1501

联系人:赵经理

电   话:18468005465

微   信:qcf18468005465

新闻详情 当前位置:首页 > 行业新闻 > 水轮发电机发生故障后如何处理

水轮发电机发生故障后如何处理
 日期:2020/4/12 13:27:00 

随着我国能源结构调整的逐步推进,风电、光伏发电等非稳定性电源快速发展,水轮发电机组在电网中承担调峰调频的任务越来越多,这就要求水轮发电机组在其整个工况范围内具有充分的可用性,这就对水轮发电机组故障诊断、故障预测及状态评估提出了更高的要求。为了确保水轮发电机组安全稳定运行,本文针对水轮发电机组故障诊断与预测应用中的若干关键科学问题,以机组振动信号处理和运行工况分析为切入点,提取表征机组故障状态的信号时频分布特征和工况特征等多重特征向量,提高故障特征向量的准确度,进一步构建基于多重特征向量相融合的水轮发电机组故障诊断及故障预测体系,实现水轮发电机组故障的准确诊断与预测。

论文的主要研究内容和创新性成果如下:1针对水轮发电机组振动信号具有非平稳、低信噪比和多振源激励信号分量相互混叠等特征,提出了一种独立分量分析-经验模态分解的水轮发电机组非平稳信号特征提取方法。在该算法中,首先采用独立分量分析法提取出主要振源的激励信号分量,即统计独立分量,有效消除或降低模态混叠现象,再对统计独立分量进行自相关分析,消除统计独立分量中非周期噪声的影响;然后再采用经验模态分解对统计独立分量进行自适应分解,获得多组本征模态函数;对同频本征模态函数进行重构,提取出故障特征频段的征兆信号,实现水轮发电机组强背景噪声非平稳早期故障特征信号的有效提取。试验结果表明,本文所提方法在水轮发电机组早期故障微弱征兆信号和突变故障特征信号提取方面具有明显的优势,更适用于强背景噪声影响下的水轮发电机组非平稳微弱信号特征提取。

2传统水轮发电机组故障诊断方法绝大多数是基于振动信号的时频特征进行故障识别,忽略的水轮发电机组运行工况对振动信号时频特征的影响,降低了诊断的准确率。针对上述问题,本文引入过程控制理论中的统计诊断方法,分别对水轮发电机组每种工况过程中的振动变量和工况参数进行融合建模,提出了一种基于KICA-PCA的多元非线性系统过程诊断方法,该方法通过计算工况过程的统计指标实现水轮发电机组故障诊断。本文所提方法通过水轮发电机组运行工况信息与振动信号的有效融合,提高了故障诊断结果的可信度,打破了传统基于振动信号时频特征的水轮发电机组故障诊断方法的诊断范式。试验结果表明,相对于PCA和ICA-PCA等线性系统过程诊断方法,本文所提方法的诊断正确率更高,且时效性更好,更适用于水轮发电机组多元非线性系统的过程诊断。